If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7y^2+91y-98=0
a = -7; b = 91; c = -98;
Δ = b2-4ac
Δ = 912-4·(-7)·(-98)
Δ = 5537
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5537}=\sqrt{49*113}=\sqrt{49}*\sqrt{113}=7\sqrt{113}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(91)-7\sqrt{113}}{2*-7}=\frac{-91-7\sqrt{113}}{-14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(91)+7\sqrt{113}}{2*-7}=\frac{-91+7\sqrt{113}}{-14} $
| 4/7x-2=14 | | 50-2x=70-42x | | 8x-71=5x+7 | | -4/5k=80 | | x/24=72/x1/2 | | 3x-118=52-2x | | 7x+15-2x=0 | | 2(x-3)=4x+3x+6 | | 12−6x=10−5x | | 6(1+8x)=94+4x | | -2x/5=6 | | (2t-5)(7t-6)(7t-6)=0 | | 70-5x=90-45x | | 12=10u-7u | | -15=3z-6 | | 4x-3x+4=-6 | | 9x^2+x+9x^2=0 | | 3(n+5)=2n+39 | | 19-6(2x-3)=10x-7 | | 1/3+x/2=23/6 | | 4x-3x+4=9-2x | | 6/5x+1=7/15 | | 5.6x-4.7=0.3(12x-9) | | -8+2y=-20 | | 5.6x-4.7=3(12x-9) | | 6/5x+1=7/5 | | x/10+9=2 | | 5.6x-4.7=0.5(12x-9) | | 23+25.5m=40+21.25m | | 2^x-2=0 | | 5.6x-4.7=0.2(12x-9) | | 6c+3+54+63=180 |